An Air Force Academy cadet created a bullet-stopping goo for body armor

After a little more than a year of research and more than 20 attempts to get the right materials, an Air Force Academy cadet and professor have developed a kind of goo that can be used to enhance existing types of body armor.

As part of a chemistry class project in 2014, Cadet 1st Class Hayley Weir was assigned epoxy, Kevlar, and carbon fiber to use to create a material that could stop a bullet.

The project grabbed Weir’s interest.

“Like Under Armour, for real,” she said.

The materials reminded her of Oobleck, a non-Newtonian fluid — which thickens when force is applied — made of cornstarch and water and named after a substance from a Dr. Seuss book, and she became interested in producing a material that would stop bullets without shattering. An adviser suggested swapping a thickening fluid for the epoxy, which hardened when it dried.

Related: The Marine Corps just spent $6 million on a war tool invented in the barracks

“Up to that point, it was the coolest thing I’d done as a cadet,” Weir, set to graduate this spring, told Air Force Times.

But soon after, she had to switch majors from materials chemistry to military strategies. That presented a challenge in continuing the research, but she teamed up with Ryan Burke, a military and strategic studies professor at the academy.

Burke, a former Marine, was familiar with the cumbersome nature of current body armor, and he was enthused about Weir’s project.

“When she came to me with this idea, I said, ‘Let’s do it,'” he said. “Even if it is a miserable failure, I was interested in trying.”

Air Force Academy cadet Hayley Weir with professor Ryan Burke. | Air Force Academy photo by Tech Sgt. Julius Delos Reyes

The science behind the material is not new, and Burke expected that the vast defense industry had pursued such a substance already. But a search of studies found no such work, and researchers and chemists at the Air Force Civil Engineer Center said the idea was worth looking into.

They began work during the latter half of 2016 using the academy’s firing range, weapons, and a high-speed camera. Burke got in touch with Marine Corps contacts who provided testing materials.

In the lab, Weir would make the substance using a KitchenAid mixer and plastic utensils. It was then placed in vacuum-sealed bags, flattened into quarter-inch layers, and inserted into a swatch of Kevlar.

At first, during tests with a 9 mm pistol, they made little headway.

“Bullets kept going straight through the material with little sign of stopping,” Weir told Air Force Times. After revisiting their work and redoing the layering pattern, they returned to the firing range on December 9.

Bullets flattened during tests of Weir and Burke’s prototype. NBC/KUSA 9 News

Apprehensive, Weir fired on the material.

“Hayley, I think it stopped it,” Burke said after reviewing the video. It was the first time their material had stopped a bullet.

This year, they traveled to the Air Force Civil Engineer Center to present their work and up the ante on their tests.

Weir’s material was able to stop a 9 mm round, a .40 Smith & Wesson round, and a .44 Magnum round — all fired at close range.

Also read: The US Army may consider building a new ‘urban warfare’ school

During the tests, 9 mm rounds went through most of the material’s layers before getting caught in the fiber backing. The .40 caliber round was stopped by the third layer, while the .44 Magnum round was stopped by the first layer.

The round from the .44 Magnum, which has been used to hunt elephants, is “a gigantic bullet,” Weir told Air Force Times. “This is the highest-caliber we have stopped so far.”

Because it could stop that round, the material could be certified as type 3 body armor, which is usually worn by Air Force security personnel.

The harder the bullet’s impact, the more the molecules in the material responded, yielding better resistance. “The greater the force, the greater the hardening or thickening effect,” Burke said.

The bullet-stopping material developed by Weir and Burke being mixed. NBC/KUSA 9 News

“We’re very pleased,” said Jeff Owens, a senior research chemist with the Air Force Civil Engineer Center’s requirements, research, and development division. “We now understand more about what the important variables are, so now we’re going to go back and pick all the variables apart, optimize each one, and see if we can get up to a higher level of protection.”

The model Weir and Burke created uses 75% less fabric than standard military-style body armor.

It also has the potential for use as a protective lining on vehicles and aircraft and in tents to protect their occupants from shrapnel or gunfire.

“It’s going to make a difference for Marines in the field,” Burke said.

On the civilian side, the material could aid emergency responders in active-shooter situations.

“I don’t think it has actually set in how big this can get,” Weir said in early May. “I think this is going to take off and it’s going to be really awesome.”

While the ultimate use of the material is unclear, the US Army and Marine Corps are reportedly looking for ways lighten the body armor their personnel use.

A study by the Government Accountability Office, cited by Army Times, highlighted joint efforts to lower the weight of current body armor, which is 27 pounds on average. Including body armor, the average total weight carried by Marines is 117 pounds, while soldiers are saddled with 119 pounds, according to the report.

The Army and Marines have looked into several ways to redistribute the weight soldiers and Marines carry, including new ways to transport their gear on and around the battlefield. The GAO report also said each branch had updated its soft armor, in some cases cutting 6 to 7 pounds.

TOP ARTICLES
This is how missing or captured troops get promoted

According to the Department of Defense, prisoners of war and those under missing status continue to be considered for promotion along with their contemporaries.

6 reasons Charleston might be America's most gung-ho military city

From Charles Towne Landing to the Medal of Honor Museum, go grab a pint where George Washington drank and read about the military legacy of South Carolina's Atlantic jewel.

This is how long South Korea thinks it will take to conquer the North

South Korea says they are developing new plans to defend against advancing North Korean threats after a data breach left their outdated plans vulnerable.

This stunning video shows how well 100-year-old ammo works today

While original 1911 pistols surely still function today, turns out so does the ammo from that era.

This could be the Army's next rifle — and it's totally awesome

Textron debuted its newest rifle, the Intermediate Case-Telescoped Carbine, at AUSA. It's lighter and more deadly than the current M4.

16 jokes Germans could die for telling under the Nazi regime

The Nazi Party was well short of a majority when it came to power. So it's easy to believe that not everyone was a big fan of Hitler or his ideas.

These really smart people say bigger is better when it comes to building aircraft carriers

In an effort to reduce its fiscal footprint, the Navy is looking at making smaller ships. But these defense researchers say it's a terrible idea.

Now that ISIS is on the ropes, these guys have turned the guns on each other

Two US allies, which were armed and trained by US forces, have turned their weapons on each other, and there isn't much the US can do about it.

This is the definitive history of the world's most advanced fighter jet

The new F-22A Raptor fighter jet is the most advance fighter jet in the world, and it dominates on every level imaginable.

This is how the $102 million B-1A almost replaced the B-52

The plan was to buy 240 B-1As to replace the B-52 as the Air Force's primary strategic bomber, but eventually, they each found their place in the force.