The Army tested its first damage sensors on these helicopters

For the first time ever, a team of researchers successfully developed and tested networked acoustic emission sensors that can detect airframe damage on conceptual composite UH-60 Black Hawk rotorcraft.

Researchers with the U.S. Army Research Laboratory and the U.S Army Aviation and Missile Research, Development, and Engineering Center said their discovery opens up possibilities for new on-board features that could immediately alert the flight crew to the state of structural damage, like matrix cracking and delamination, as they occur, giving the crew greater opportunity to take corrective actions before catastrophic failure.

ARL has been studying several possible alternatives to rotorcraft airframe health monitoring. This effort, which began almost two years ago, makes a strong case for integrated real-time damage sensing methodologies on future airframe structures. The sensing method can be used to reliably detect and locate the initiation and growth of damage that may occur during service.

The approximate cut-out location of the test article and location of group sensors. Sensor groups 1 and 2 are shown. Groups 3 and 4 are on the opposite side. (Image from US Army)

The approximate cut-out location of the test article and location of group sensors. Sensor groups 1 and 2 are shown. Groups 3 and 4 are on the opposite side. (Image from U.S. Army)

“Future Army airframe structures are required to be lighter, safer, and ultra-reliable,” said Dr. Mulugeta Haile, research aerospace engineer. “To achieve these, the Army must adopt a combined strategy of implementing advanced structural design methods, improved structural materials, and integrated damage-sensing and risk-prediction capabilities.”

He said the team turned to acoustic emission tests because other methods, such as ultrasonic and radiography, require an external energy source in the form of a directed wave.

“The external energy has the undesirable effect of interfering with other systems of the aircraft. In addition, other methods are not as good as AE in detecting early damage,” he said.

Acoustic emission sensing is a passive, non-destructive technique for detection of damage in the very early stage, and long before the structure experiences catastrophic failure. Unlike other methods, acoustic emission detects damage in real-time (or at the instant the damage is happening). The fact that AE is passive means that it does not require an external energy to detect damage. It relies on the energy that is initiated within the structure, Haile explained.

Acoustic emission sensors used in the distributed network are lightweight broadband piezoelectric crystals. (Photo from US Army)

Acoustic emission sensors used in the distributed network are lightweight broadband piezoelectric crystals. (Photo from U.S. Army)

“The novelty of the current work is that we introduced several new concepts on wave acquisition control and signal processing to recover damage-related information in networked acoustic emission sensors,” Haile said. “The Eureka moment was when the sensing network consistently identified and located the initiation and progression of damage during a prolonged fatigue test that lasted over 200,000 cycles — a feat that has never been achieved before.”

The ARL sensing network is composed of several lightweight transducers encapsulated in 3D-printed, non-intrusive sensor mounts. Sensors of the network are optimally distributed in multiple zones to maximize coverage as well as probability of damage detection. The data acquisition process is embedded with a software-controllable timing parameter to reject reflections of a direct wave, as well as waves coming from non-damage related events. Meanwhile, the signal processing algorithm is augmented with a layer of adaptive digital filters to minimize effects of signal distortion during location analysis.

Dr. Jaret Riddick, director of the Vehicle Technology Directorate, along with Haile, Nathaniel Bordick, and other ARL partners, collaborated to elucidate detailed mechanisms for full-scale damage detection in complex rotorcraft structures using the distributed sensor architecture. Key to the technique is the development of signal distortion control parameters, acquisition timing control, and 3D-printed sensor capsules.

Dr. Jaret C. Riddick, an aerospace engineer in the U.S. Army Research Laboratory's Vehicle Technology Directorate, interacts with an attendee at the Maryland 3D Printing event. (Photo from U.S. Army Research Laboratory)

Dr. Jaret C. Riddick (left), an aerospace engineer in the U.S. Army Research Laboratory’s Vehicle Technology Directorate, interacts with an attendee at the Maryland 3D Printing event. (Photo from U.S. Army Research Laboratory)

“The downtime due to routine inspection and maintenance represents the major fraction of the life cycle cost of Army platforms, because we are not using the platform and we have to pay for inspection, which, in most cases, reveals no damage. So, the idea is to integrate a reliable damage sensing network and perform maintenance only when necessary,” Riddick said.

Currently, the Army sustains its fleet using phase maintenance paradigm, which is a periodic calendar-based practice that requires inspection and maintenance at fixed time intervals. The process is highly inefficient, costly and entails extended downtime. The newly developed sensing network will enable condition-based maintenance or maintenance on demand. It has the potential to drastically cut the life cycle cost of Army vehicles. The work also supports the Army’s long term vision of maintenance-free aircrafts.

Related: The Army is building futuristic robots (which is awesome and terrifying)

“Large-scale AE monitoring is a data-intensive process with several million hits being received by each transducer per flight,” Halle said. “This puts a higher load on the internal bus and circuitry of any data acquisition hardware. In general, most hits are not related to damage. Rather, they are noises from moving parts, such as the clicking or rubbing noises of fasteners, panel connections, and vibrations from other non-damage related sources. Unwanted AE hits also arise due to reflections of an already received and processed AE wave. The challenge is to develop a system which is sensitive only to damage related hits and insensitive to all other hits.”

The damage sensing network is integrated into a conceptual composite UH-60M Black Hawk rotorcraft. (Photo from U.S. Army)

The damage sensing network is integrated into a conceptual composite UH-60M Black Hawk rotorcraft. (Photo from U.S. Army)

“Most of the available AE-based structural health monitoring is for simple plate-like structures, despite most airframe structures not being simple plates,” Bordick said. “Not much has been done on integrated full-scale airframe health monitoring using AE. The problem is quite complex. I’m glad that we were able to successfully develop and demonstrate the sensing network.”

The U.S. Army Research Laboratory, currently celebrating 25 years of excellence in Army science and technology, is part of the U.S. Army Research, Development, and Engineering Command, which has the mission to provide innovative research, development, and engineering to produce capabilities that provide decisive overmatch to the Army against the complexities of the current and future operating environments in support of the joint warfighter and the nation. RDECOM is a major subordinate command of the U.S. Army Materiel Command.

TOP ARTICLES
This wounded warrior is turning steel into gold in Alabama

Colin Wayne went from an Army National Guardsman to a fitness model to...a steel worker? Wayne’s company, Redline Steel, creates art from steel.

3 leadership lessons that will take you from the battlefield to the boardroom

Col. Ted Studdard never imagined he'd have a 25-year career in the Marines, but he's got some pro tips to share now that he's a bonafide "mustang."

How a soldier went to war with his unique brand of Cuban-style cigars

Blanco Cigar, a company built and run by a first generation American with Cuban roots, has its ups and downs, but generated over a million dollars in 2017.

6 crazy things actually found in boot camp amnesty boxes

Upon arriving at boot camp, the staff gives newbies a chance to toss prohibited items into the "amnesty box." Want to know what's inside?

Why your next battle buddy might be a robot armed with a railgun

The Army has quite a Christmas wishlist for Uncle Sam Claus, and it's filled with all kinds of goodies like robots, light tanks, and lasers.

Here's why some Corpsmen are considered Marines, and some aren't

A sailor earning respect from a Marine is a tough challenge. It's a special privilege to have a Marine tell you happy birthday each Nov. 10.

Here are the changes to the combat uniform the Army is testing right now

The Army will be testing new uniforms and boots beginning in 2018, better suited for hotter environments. Here's what's different about them.

The Navy will pump out more attack subs to counter Russia and China

The Navy had previously decided to slow production of Virginia-Class submarines, but has now decided to produce more in order to keep up with rivals.

So, parts of our helicopters are falling on children now

A window fell out of a CH-53E as it flew over an elementary school in Okinawa, Japan. One child sustained a minor injury from debris caused by the window.

Everything you need to know about the massive new defense bill

The new defense bill, recently signed by President Trump, is filled with interesting new changes. How will the new defense spending affect you?