How the Army is revolutionizing night time target identification

SUMMARY
Innovation isn't just a matter of creating something new. Rather, it's the process of translating an idea into goods or services that will create value for an end user. As such, innovation requires three key ingredients: the need (or, in defense acquisition terms, the requirement of the customer); people competent in the required technology; and supporting resources. The Catch-22 is that all three of these ingredients need to be present for innovation success, but each one often depends on the existence of the others.
Also read: The Army is really amping up its laser weapon technology
This can be challenging for the government, where it tends to be difficult to find funding for innovative ideas when there are no perceived requirements to be fulfilled. With transformational ideas, the need is often not fully realized until after the innovation; people did not realize they "needed" a smartphone until after the iPhone was produced. For this reason, revolutionary innovations within the DoD struggle to fully mature without concerted and focused efforts from all of the defense communities: research, requirements, transition, and acquisition.
Despite these challenges, the Army has demonstrated its ability to generate successful innovative programs throughout the years. A prime example is the recently-completed Third Generation Forward Looking Infrared (3rd Gen FLIR) program.
The first implementation of FLIR gave the Army a limited ability to detect objects on the battlefield at night. Users were able to see "glowing, moving blobs" that stood out in contrast to the background. Although detectable, these blobs were often challenging to identify. In cluttered, complex environments, distinguishing non-moving objects from the background could be difficult.
These first-generation systems were large and slow and provided low-resolution images not suitable for long-range target identification. In many ways, they were like the boom box music players that existed before the iPhone: They played music, but they could support only one function, had a limited capacity, took up a lot of space, required significant power and were not very portable. Third Gen FLIR was developed based on the idea that greater speed, precision, and range in the targeting process could unlock the full potential of infrared imaging and would provide a transformative capability, like the iPhone, that would have cascading positive effects across the entire military well into the future.
Related: The Army has new drones that can strike deep behind enemy lines
Because speed, precision, and accuracy are critical components for platform lethality, 3rd Gen FLIR provides a significant operational performance advantage over the previous FLIR sensor systems. With 3rd Gen FLIR, the Army moved away from a single band (which uses only a portion of the light spectrum) to a multiband infrared imaging system, which is able to select the optimal portion of the light spectrum for identifying a variety of different targets.
The Army integrated this new sensor with computer software (signal processing) to automatically enhance these FLIR images and video in real time with no complicated setup or training required (similar to how the iPhone automatically adjusts for various lighting conditions to create the best image possible). 3rd Gen FLIR combines all of these features along with multiple fields of view (similar to having multiple camera lenses that change on demand) to provide significantly improved detection ranges and a reduction in false alarms when compared with previous FLIR sensor systems.
Read more: Why the Army needs to speed up its future weapons programs
Using its wider fields of view and increased resolution, 3rd Gen FLIR allows the military to conduct rapid area search. This capability has proven to be invaluable in distinguishing combatants from noncombatants and reducing collateral damage. Having all of these elements within a single sensor allows warfighters to optimize their equipment for the prevailing battlefield conditions, greatly enhancing mission effectiveness and survivability. Current and future air and ground-based systems alike benefit from the new FLIR sensors, by enabling the military to purchase a single sensor that can be used across multiple platforms and for a variety of missions. This provides significant cost savings for the military by reducing the number of different systems it has to buy, maintain and sustain.